0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLE5012B E9000

TLE5012B E9000

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    DSOIC8

  • 描述:

    TLE5012B E9000

  • 数据手册
  • 价格&库存
TLE5012B E9000 数据手册
TLE5012B GMR-Based Angle Sensor 1 Overview Features • Giant Magneto Resistance (GMR)-based principle • Integrated magnetic field sensing for angle measurement • 360° angle measurement with revolution counter and angle speed measurement • Two separate highly accurate single bit SD-ADC • 15 bit representation of absolute angle value on the output (resolution of 0.01°) • 16 bit representation of sine / cosine values on the interface • Max. 1.0° angle error over lifetime and temperature-range with activated auto-calibration • Bi-directional SSC Interface up to 8 Mbit/s • Supports Safety Integrity Level (SIL) with diagnostic functions and status information • Interfaces: SSC, PWM, Incremental Interface (IIF), Hall Switch Mode (HSM), Short PWM Code (SPC, based on SENT protocol defined in SAE J2716) • Output pins can be configured (programmed or pre-configured) as push-pull or open-drain • Bus mode operation of multiple sensors on one line is possible with SSC or SPC interface • 0.25 µm CMOS technology • Automotive qualified: -40°C to 150°C (junction temperature) • ESD > 4 kV (HBM) • RoHS compliant (Pb-free package) • Halogen-free PRO-SIL™ Features • Test vectors switchable to ADC input (activated via SSC interface) • Inversion or combination of filter input streams (activated via SSC interface) • Data transmission check via 8-bit Cyclic Redundancy Check (CRC) for SSC communication and 4-bit CRC nibble for SPC interface • Built-in Self-test (BIST) routines for ISM, CORDIC, CCU, ADCs run at startup • Two independent active interfaces possible • Overvoltage and undervoltage detection Data Sheet www.infineon.com 1 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Overview Potential applications The TLE5012B GMR-based angle sensor is designed for angular position sensing in automotive applications such as: • Electrical commutated motor (e.g. used in Electric Power Steering (EPS)) • Rotary switches • Steering angle measurements • General angular sensing Product validation Qualified for automotive applications. Product validation according to AEC-Q100. Description The TLE5012B is a 360° angle sensor that detects the orientation of a magnetic field. This is achieved by measuring sine and cosine angle components with monolithic integrated Giant Magneto Resistance (iGMR) elements. These raw signals (sine and cosine) are digitally processed internally to calculate the angle orientation of the magnetic field (magnet). The TLE5012B is a pre-calibrated sensor. The calibration parameters are stored in laser fuses. At start-up the values of the fuses are written into flip-flops, where these values can be changed by the application-specific parameters. Further precision of the angle measurement over a wide temperature range and a long lifetime can be improved by enabling an optional internal autocalibration algorithm. Data communications are accomplished with a bi-directional Synchronous Serial Communication (SSC) that is SPI-compatible. The sensor configuration is stored in registers, which are accessible by the SSC interface. Additionally four other interfaces are available with the TLE5012B: Pulse-Width-Modulation (PWM) Protocol, Short-PWM-Code (SPC) Protocol, Hall Switch Mode (HSM) and Incremental Interface (IIF). These interfaces can be used in parallel with SSC or alone. Pre-configured sensor derivates with different interface settings are available (see Table 1 and Chapter 5). Online diagnostic functions are provided to ensure reliable operation. Table 1 Derivate ordering codes Product type Marking Ordering code Package TLE5012B E1000 012B1000 SP001166960 PG-DSO-8 TLE5012B E3005 012B3005 SP001166964 PG-DSO-8 TLE5012B E5000 012B5000 SP001166968 PG-DSO-8 TLE5012B E5020 012B5020 SP001166972 PG-DSO-8 TLE5012B E9000 012B9000 SP001166998 PG-DSO-8 Note: Data Sheet See Chapter 5 for description of derivates. 2 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Table of Contents 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 2.1 2.2 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.3 2.4 2.5 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional block description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internal power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oscillator and PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SD-ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Digital Signal Processing Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Safety features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sensing principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 Application circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 IIF interface and SSC (IIF in push-pull configuration) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 HSM interface and SSC (HSM in push-pull configuration) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 HSM interface and SSC (HSM in open-drain configuration) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 PWM interface (push-pull configuration) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 PWM interface (open-drain configuration) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 SPC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 SSC interface (push-pull configuration) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 SSC interface (open-drain configuration) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Sensor supply in bus mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4 4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 4.3.7 4.4 4.4.1 4.4.1.1 4.4.1.2 4.4.2 4.4.3 4.4.3.1 4.4.3.2 4.4.3.3 4.4.4 4.4.5 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Operating range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Input/Output characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 GMR parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Angle performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Autocalibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Signal processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Clock supply (CLK timing definition) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Synchronous Serial Communication (SSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 SSC timing definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 SSC data transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Pulse Width Modulation (PWM) interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Short PWM Code (SPC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Unit time setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Master trigger pulse requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Checksum nibble details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Hall Switch Mode (HSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Incremental Interface (IIF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Data Sheet 3 5 5 5 5 5 6 6 6 6 7 9 9 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor 4.5 4.5.1 4.6 4.6.1 4.6.2 4.6.3 4.6.4 Test mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ADC test vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supply monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internal supply voltage comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDD overvoltage detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GND - Off comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDD - Off comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5.1 5.2 5.3 5.4 5.5 Pre-configured derivates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 IIF-type: E1000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 HSM-type: E3005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 PWM-type: E5000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 PWM-type: E5020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 SPC-type: E9000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6 6.1 6.2 6.3 6.4 6.5 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Package parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Data Sheet 4 42 42 43 43 44 44 44 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Functional description 2 Functional description 2.1 Block diagram TLE5012B VDD VRG VRA VRD GND X GMR SDADC Digital Signal Processing Unit CSQ SSC Interface SCK DATA Y GMR Temp SDADC ISM CORDIC SDADC CCU RAM Fuses Incremental IF PWM HSM SPC Osc Figure 1 TLE5012B block diagram 2.2 Functional block description 2.2.1 Internal power supply IFA IFB IFC PLL The internal stages of the TLE5012B are supplied with several voltage regulators: • GMR Voltage Regulator, VRG • Analog Voltage Regulator, VRA • Digital Voltage Regulator, VRD (derived from VRA) These regulators are directly connected to the supply voltage VDD. 2.2.2 Oscillator and PLL The digital clock of the TLE5012B is given by the Phase-Locked Loop (PLL), which is by default fed by an internal oscillator. In order to synchronize the TLE5012B with other ICs in a system, the TLE5012B can be configured via SSC interface to use an external clock signal supplied on the IFC pin as source for the PLL, instead of the internal clock. External clock mode is only available in PWM or SPC interface configuration. Data Sheet 5 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Functional description 2.2.3 SD-ADC The Sigma-Delta Analog-Digital-Converters (SD-ADC) transform the analog GMR voltages and temperature voltage into the digital domain. 2.2.4 Digital Signal Processing Unit The Digital Signal Processing Unit (DSPU) contains the: • Intelligent State Machine (ISM), which does error compensation of offset, offset temperature drift, amplitude synchronicity and orthogonality of the raw signals from the GMR bridges, and performs additional features such as auto-calibration, prediction and angle speed calculation • COordinate Rotation DIgital Computer (CORDIC), which contains the trigonometric function for angle calculation • Capture Compare Unit (CCU), which is used to generate the PWM and SPC signals • Random Access Memory (RAM), which contains the configuration registers • Laser Fuses, which contain the calibration parameters for the error-compensation and the IC default configuration, which is loaded into the RAM at startup 2.2.5 Interfaces Bi-directional communication with the TLE5012B is enabled by a three-wire SSC interface. In parallel to the SSC interface, one secondary interface can be selected, which is available on the IFA, IFB, IFC pins: • PWM • Incremental Interface • Hall Switch Mode • Short PWM Code By using pre-configured derivates (see Chapter 5), the TLE5012B can also be operated with the secondary interface only, without SSC communication. 2.2.6 Safety features The TLE5012B offers a multiplicity of safety features to support the Safety Integrity Level (SIL) and it is a PRO-SIL™ product. Safety features are: • Test vectors switchable to ADC input (activated via SSC interface) • Inversion or combination of filter input streams (activated via SSC interface) • Data transmission check via 8-bit Cyclic Redundancy Check (CRC) for SSC communication and 4-bit CRC nibble for SPC interface • Built-in Self-test (BIST) routines for ISM, CORDIC, CCU, ADCs run at startup • Two independent active interfaces possible • Overvoltage and undervoltage detection Disclaimer PRO-SIL™ is a Registered Trademark of Infineon Technologies AG. The PRO-SIL™ Trademark designates Infineon products which contain SIL Supporting Features. SIL Supporting Features are intended to support the overall System Design to reach the desired SIL (according to IEC61508) or A-SIL (according to ISO26262) level for the Safety System with high efficiency. Data Sheet 6 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Functional description SIL respectively A-SIL certification for such a System has to be reached on system level by the System Responsible at an accredited Certification Authority. SIL stands for Safety Integrity Level (according to IEC 61508) A-SIL stands for Automotive-Safety Integrity Level (according to ISO 26262) 2.3 Sensing principle The Giant Magneto Resistance (GMR) sensor is implemented using vertical integration. This means that the GMR-sensitive areas are integrated above the logic part of the TLE5012B device. These GMR elements change their resistance depending on the direction of the magnetic field. Four individual GMR elements are connected to one Wheatstone sensor bridge. These GMR elements sense one of two components of the applied magnetic field: • X component, Vx (cosine) or the • Y component, Vy (sine) With this full-bridge structure the maximum GMR signal is available and temperature effects cancel out each other. GMR Resistors S 0° VX VY N ADCX + ADCX - GND ADCY+ ADCY- VDD 90° Figure 2 Sensitive bridges of the GMR sensor (not to scale) Attention: Due to the rotational placement inaccuracy of the sensor IC in the package, the sensors 0° position may deviate by up to 3° from the package edge direction indicated in Figure 2. In Figure 2, the arrows in the resistors represent the magnetic direction which is fixed in the reference layer. If the external magnetic field is parallel to the direction of the Reference Layer, the resistance is minimal. If they are anti-parallel, resistance is maximal. The output signal of each bridge is only unambiguous over 180° between two maxima. Therefore two bridges are oriented orthogonally to each other to measure 360°. Data Sheet 7 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Functional description With the trigonometric function ARCTAN2, the true 360° angle value is calculated out of the raw X and Y signals from the sensor bridges. Y Component (SIN) VY X Component (COS) VX V VX (COS) 0° 90° 180° 270° 360° Angle α VY (SIN) Figure 3 Data Sheet Ideal output of the GMR sensor bridges 8 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Functional description 2.4 Pin configuration 8 7 6 5 1 2 3 4 Figure 4 Pin configuration (top view) 2.5 Pin description Table 2 Pin Description Center of Sensitive Area Pin No. Symbol In/Out Function 1 IFC (CLK / IIF_IDX / HS3) I/O Interface C: External Clock1) / IIF Index / Hall Switch Signal 3 2 SCK I SSC Clock 3 CSQ I SSC Chip Select 4 DATA I/O SSC Data 5 IFA (IIF_A / HS1 / PWM / SPC) I/O Interface A: IIF Phase A / Hall Switch Signal 1 / PWM / SPC output (input for SPC trigger only) 6 VDD - Supply Voltage 7 GND - Ground 8 IFB (IIF_B / HS2) O Interface B: IIF Phase B / Hall Switch Signal 2 1) External clock feature is not available in IIF or HSM interface mode. Data Sheet 9 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Application circuits 3 Application circuits The application circuits in this chapter show the various communication possibilities of the TLE5012B. The pin output mode configuration is device-specific and it can be either push-pull or open-drain. The bit IFAB_OD (register IFAB, 0DH) indicates the output mode for the IFA, IFB and IFC pins. The SSC pins are by default pushpull (bit SSC_OD, register MOD_3, 09H). Every application circuits below are using otherwise specified SSC with push-pull configuration and the internal clock. 3.1 IIF interface and SSC (IIF in push-pull configuration) Figure 5 shows a block diagram of a TLE5012B with Incremental Interface (IIF) and SSC interface. The derivate TLE5012B - E1000 is by default configured with push-pull IFA (IIF_A), IFB (IIF_ B) and IFC (IIF_IDX) pins. When the output pins are configurated as open-drain, three pull-up resistors should be added (e.g. 2K2Ω) between the data lines and VDD. TLE5012B 3.0 – 5.5V VDD 100nF CSQ Rs1 SCK Rs1 DATA Rs2 IFA IFB IFC SSC (IIF_A) (IIF_B) IIF (IIF_IDX) GND Rs1 recommended, e.g. 100Ω Rs2 recommended, e.g. 470Ω Figure 5 Data Sheet Application circuit for TLE5012B with IIF interface and SSC 10 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Application circuits 3.2 HSM interface and SSC (HSM in push-pull configuration) Figure 6 shows a block diagram of the TLE5012B with Hall Switch Mode (HSM) and SSC interface. The derivate TLE5012B - E3005 is by default configurated with push-pull IFA (HS1), IFB (HS2) and IFC (HS3) pins. TLE5012B 3.0 – 5.5V VDD 100nF CSQ Rs1 SCK Rs1 DATA IFA IFB IFC SSC Rs2 (HS1) (HS2) HSM (HS3) GND Rs1 recommended, e.g. 100Ω Rs2 recommended, e.g. 470Ω Figure 6 Application circuit for TLE5012B with HSM interface (push-pull configuration) and SSC 3.3 HSM interface and SSC (HSM in open-drain configuration) As shown in Figure 7 when IFA, IFB and IFC are configurated via the SSC interface as open drain pins, three pullup resistors (Rpu) should be added on the output lines. TLE5012B 3.0 – 5.5V VDD CSQ Rs1 SCK Rs1 DATA Rs2 IFA IFB IFC Rpu Rpu Rpu 100nF SSC (HS1) (HS2) HSM (HS3) GND Rs1 recommended, e.g. 100Ω Rs2 recommended, e.g. 470Ω Figure 7 Data Sheet Rpu required, e.g. 2K2Ω Application circuit for TLE5012B with HSM interface (open-drain configuration) and SSC 11 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Application circuits 3.4 PWM interface (push-pull configuration) The TLE5012B can be configured with PWM only (Figure 8). The derivate TLE5012B - E5000 is by default configurated with push-pull configuration for IFA (PWM) pin. Internal pull-up resistors are always available for DATA and CSQ pins (see Table 7). It is recommended to connect CSQ pin to VDD to provide a high level and avoid unintentional activation of the SSC interface. DATA pin should be left open. The figure below shows a typical implementation of the TLE5012B - E5000. TLE5012B 3.0 – 5.5V VDD 100nF CSQ SCK DATA IFA (PWM) PWM IFB IFC GND Figure 8 Application circuit for TLE5012B with PWM (push-pull configuration) interface 3.5 PWM interface (open-drain configuration) The TLE5012B - E5020 is also a PWM derivate but with open drain for IFA (PWM) pin. A pull-up resistor (e.g. 2.2 kΩ) should be added between the IFA line and VDD, as shown in Figure 9. Internal pull-up resistors are always available for DATA and CSQ pins (see Table 7). It is recommended to connect CSQ pin to VDD to provide a strong level and avoid unintentional activation of the SSC interface. DATA pin should be left open. The figure below shows a typical implementation of the TLE5012B - E5020. TLE5012B 3.0 – 5.5V VDD Rpu 100nF CSQ SCK DATA IFA (PWM) PWM IFB IFC GND Rpu required, e.g. 2K2Ω Figure 9 Data Sheet Application circuit for TLE5012B with PWM (open-drain configuration) interface 12 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Application circuits 3.6 SPC interface The TLE5012B can be configured with SPC only (Figure 10). This is only possible with the TLE5012B - E9000 derivate, which is by default configurated with an open-drain IFA (SPC) pin. In Figure 10 the IFC (S_NR[1]) and SCK (S_NR[0]) pins are set to ground to generate the slave number (S_NR) 0D (or 00B). In case of SCK (S_NR[0]) needs to be set to VDD to generate another slave address, CSQ pin should be set to ground instead. Internal pull-up resistors are always available for DATA and CSQ pins (see Table 7). DATA pin should be left open. Since SCK and CSQ pins should have opposite level, it is not recommended to use the SSC interface in parallel. TLE5012B 3.0 – 5.5V VDD Rpu 100nF CSQ SCK DATA IFA (SPC) SPC IFB IFC GND Rpu required, e.g. 2K2Ω Figure 10 Application circuit for TLE5012B with SPC interface 3.7 SSC interface (push-pull configuration) In Figure 5, Figure 6 and Figure 7 the SSC interface has the default push-pull configuration (see details in Figure 11). A series resistor on the DATA line is recommended to limit the current in erroneous cases (e.g. the sensor pushes high and the microcontroller pulls low at the same time or vice versa). Resistors on SCK and CSQ lines are recommended in case of disturbances or noise. (SSC Slave) TLE 5012B µC (SSC Master) DATA Shift Reg. Rs2 MTSR Shift Reg. EN EN MRST SCK CSQ Rs1 Rs1 SCK Clock Gen. CSQ Rs1 recommended, e.g. 100Ω Rs2 recommended, e.g. 470Ω Figure 11 Data Sheet SSC interface with push-pull configuration (high-speed application) 13 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Application circuits 3.8 SSC interface (open-drain configuration) It is possible to use an open-drain configuration for the DATA line. This setup can be used to communicate with a microcontroller in a bus system, together with other SSC slaves (e.g. two TLE5012B devices for redundancy reasons). This mode can be activated using the bit SSC_OD. Even though, push-pull configuration in a bus system is also possible since the addressing of the sensor is performed with CSQ pin. The open-drain configuration can be seen in Figure 12. Series resistors on the DATA line are recommended to limit the current in erroneous cases. Resistors on SCK and CSQ lines are recommended in case of disturbances or noise A pull-up resistor of typ. 1 kΩ is required on the DATA line. µC (SSC Master) Rpu (SSC Slave) TLE 5012B DATA Shift Reg. Rs1 Rs1 MTSR Shift Reg. EN EN MRST SCK CSQ Rs1 Rs1 SCK Clock Gen. CSQ Rs1 recommended, e.g. 100Ω Rpu required, e.g. 1kΩ Figure 12 SSC interface with open-drain configuration (bus systems) 3.9 Sensor supply in bus mode When using two or more devices in a bus configuration (SSC or SPC interface). It is recommended to use the same supply for every sensors connected to the bus. In case of a power loss the unpowered device is sinking current through the OUT pin. Depending on the external circuitry the additional current flow might disturb the bus behavior. The figure below (Figure 13) shows a typical implementation of a bus mode using SPC interface. External components such as EMC filter or additional series resistors are not represented for clarity purpose. Only the pull-up resistor Rpu is shown. Data Sheet 14 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Application circuits Sensor 1 VDD VDD MCU VDD Rpu VDD VDD OUT GND CCU GND Sensor x VDD VDD OUT GND Figure 13 Data Sheet Sensors’ supply in bus mode 15 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Specification 4 Specification 4.1 Absolute maximum ratings Table 3 Absolute maximum ratings Parameter Symbol Values Min. Voltage on VDD pin with respect to ground (VSS) Typ. Unit Note or Test Condition Max. VDD -0.5 6.5 V Voltage on any pin with respect VIN to ground (VSS) -0.5 6.5 V Junction temperature -40 Magnetic field induction Storage temperature TJ VDD + 0.5 V B TST Max 40 h/Lifetime -40 150 °C 150 °C For 1000 h, not additive 200 mT Max. 5 min @ TA = 25°C 150 mT Max. 5 h @ TA = 25°C 150 °C Without magnetic field Attention: Stresses above the max. values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the device. 4.2 Operating range The following operating conditions must not be exceeded in order to ensure correct operation of the TLE5012B. All parameters specified in the following sections refer to these operating conditions, unless otherwise noted. Table 4 is valid for -40°C < TJ < 150°C unless otherwise noted. Table 4 Operating range and parameters Parameter Symbol Supply voltage VDD Supply current IDD Magnetic induction at TJ = 25°C2)3) BXY Values Unit Note or Test Condition Min. Typ. Max. 3.0 5.0 5.5 V 14 16 mA 30 50 mT -40°C < TJ < 150°C 30 60 mT -40°C < TJ < 100°C 30 70 mT -40°C < TJ < 85°C Additional angle error of 0.1° Extended magnetic induction range at TJ = 25°C2)3) BXY 25 30 mT Angle range Ang 0 360 ° POR level VPOR 2.0 2.9 V POR hysteresis VPORhy Data Sheet 30 16 1) Power-on reset mV Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Specification Table 4 Operating range and parameters (cont’d) Parameter Symbol Values Min. 4) Power-on time tPon Fast Reset time5) tRfast Unit Note or Test Condition Typ. Max. 5 7 ms VDD > VDDmin; 0.5 ms Fast reset is triggered by disabling startup BIST (S_BIST = 0), then enabling chip reset (AS_RST = 1) 1) 2) 3) 4) Directly blocked with 100-nF ceramic capacitor. Values refer to a homogeneous magnetic field (BXY) without vertical magnetic induction (BZ = 0 mT). See Figure 14. During “Power-on time,” write access is not permitted (except for the switch to External Clock which requires a readout as a confirmation that external clock is selected). 5) Not subject to production test - verified by design/characterization. The field strength of a magnet can be selected within the colored area of Figure 14. By limitation of the junction temperature, a higher magnetic field can be applied. In case of a maximum temperature TJ = 100°C, a magnet with up to 60 mT at TJ = 25°C is allowed. It is also possible to widen the magnetic field range for higher temperatures. In that case, additional angle errors have to be considered. Figure 14 Data Sheet Allowed magnetic field range as function of junction temperature. 17 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Specification 4.3 Characteristics 4.3.1 Input/Output characteristics The indicated parameters apply to the full operating range, unless otherwise specified. The typical values correspond to a supply voltage VDD = 5.0 V and 25°C, unless individually specified. All other values correspond to -40 °C < TJ < 150°C. Within the register MOD_3, the driver strength and the slope for push-pull communication can be varied depending on the sensor output. The driver strength is specified in Table 5 and the slope fall and rise time in Table 6. Table 5 Input voltage and output currents Parameter Symbol Values Min. Input voltage Output current (DATA-Pad) VIN Typ. -0.3 IQ Output current (IFA / IFB / IFC - IQ Pad) Unit Note or Test Condition Max. 5.5 V VDD+ 0.3 V -25 mA PAD_DRV =’0x’, sink current1)2) -5 mA PAD_DRV =’10’, sink current1)2) -0.4 mA PAD_DRV =’11’, sink current1)2) -15 mA PAD_DRV =’0x’, sink current1)2) -5 mA PAD_DRV =’1x’, sink current1)2) 1) Max. current to GND over open-drain output. 2) At VDD = 5 V. Table 6 Driver strength characteristic Parameter Symbol Values Min. Output rise/fall time Typ. tfall, trise Unit Note or Test Condition 8 ns DATA, 50 pF, PAD_DRV=’00’1)2) 28 ns DATA, 50 pF, PAD_DRV=’01’1)2) 45 ns DATA, 50 pF, PAD_DRV=’10’1)2) 130 ns DATA, 50 pF, PAD_DRV=’11’1)2) 15 ns IFA/IFB, 20 pF, PAD_DRV=’0x’1)2) 30 ns IFA/IFB, 20 pF, PAD_DRV=’1x’1)2) Max. 1) Valid for push-pull output 2) Not subject to production test - verified by design/characterization Data Sheet 18 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Specification Table 7 Electrical parameters for 4.5 V < VDD < 5.5 V Parameter Symbol Values Min. Input signal low-level VL5 Input signal high level VH5 Typ. IPU 2) Pull-down current IPD Note or Test Condition Max. 0.3 VDD 0.7 VDD V V 1 V DATA; IQ = -25 mA (PAD_DRV=’0x’), IQ = -5 mA (PAD_DRV=’10’), IQ = -0.4 mA (PAD_DRV=’11’) 1 V IFA,B,C; IQ = -15 mA (PAD_DRV=’0x’), IQ = -5 mA (PAD_DRV=’1x’) -10 -225 µA CSQ -10 -150 µA DATA 10 225 µA SCK 10 150 µA IFA, IFB, IFC Output signal low-level VOL5 Pull-up current1) Unit 1) Internal pull-ups on CSQ and DATA pin are always enabled. 2) Internal pull-downs on IFA, IFB and IFC are enabled during startup and in open-drain mode, internal pull-down on SCK is always enabled. Table 8 Electrical parameters for 3.0 V < VDD < 3.6 V Parameter Symbol Values Min. Input signal low-level VL3 Input signal high level VH3 Output signal low-level VOL3 Pull-up current1) IPU 2) Pull-down current IPD Typ. Unit Note or Test Condition Max. 0.3 VDD 0.7 VDD V V 0.9 V DATA; IQ = -15 mA (PAD_DRV=’0x’), IQ = -3 mA (PAD_DRV=’10’), IQ = -0.24 mA (PAD_DRV=’11’) 0.9 V IFA,IFB; IQ = - 10 mA (PAD_DRV=’0x’), IQ = -3 mA (PAD_DRV=’1x’) -3 -225 µA CSQ -3 -150 µA DATA 3 225 µA SCK 3 150 µA IFA, IFB, IFC 1) Internal pull-ups on CSQ and DATA pin are always enabled. 2) Internal pull-downs on IFA, IFB and IFC are enabled during startup and in open-drain mode, internal pull-down on SCK is always enabled. Data Sheet 19 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Specification 4.3.2 ESD protection Table 9 ESD protection Parameter Symbol Values Min. ESD voltage Typ. Unit Note or Test Condition Max. VHBM ±4.0 kV Human Body Model1) VSDM ±0.5 kV Socketed Device Model2) 1) Human Body Model (HBM) according to: AEC-Q100-002. 2) Socketed Device Model (SDM) according to: ESDA/ANSI/ESD SP5.3.2-2008. 4.3.3 GMR parameters All parameters apply over BXY = 30 mT and TA = 25°C, unless otherwise specified. Table 10 Basic GMR parameters Parameter Symbol Values Min. X, Y output range RGADC X, Y amplitude2) AX, AY 6000 Typ. 9500 3922 3) Note or Test Condition ±23230 digits Operating range1) 15781 digits At ambient temperature 20620 digits Operating range 112.49 % Max. k 87.5 X, Y offset4) OX , OY -2048 0 +2047 digits X, Y orthogonality error j -11.25 0 +11.24 ° X, Y amplitude without magnet X0, Y0 +4096 digits X, Y synchronicity 1) 2) 3) 4) 100 Unit Operating range1) Not subject to production test - verified by design/characterization. See Figure 15. k = 100 * (AX/AY) OY = (YMAX + YMIN) / 2; OX = (XMAX + XMIN) / 2 VY +A 0 Offset 0° 90° 180° 270° 360° Angle -A Figure 15 Data Sheet Offset and amplitude definition 20 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Specification 4.3.4 Angle performance After internal calculation, the sensor has a remaining error, as shown in Table 11. The error value refers to BZ = 0 mT and the operating conditions given in Table 4. The overall angle error represents the relative angle error. This error describes the deviation from the reference line after zero-angle definition. It is valid for a static magnetic field. If the magnetic field is rotating during the measurement, an additional propagation error is caused by the angle delay time (see Table 12), which the sensor needs to calculate the angle from the raw sine and cosine values from the MR bridges. In fast-turning applications, prediction can be enabled to reduce this propagation error. Table 11 Angle performance Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Overall angle error (with autocalibration) αErr 0.61) 1.0 ° Including lifetime and temperature drift2)3)4). Note: in case of temperature changes above 5 Kelvin within 1.5 revolutions refer to Figure 16 for additional angle error. Overall angle error (without auto- calibration) αErr 0.61) 1.3 ° Including temperature drift2)3)5) 1.9 ° Including lifetime and temperature drift2)3)4) 1) 2) 3) 4) 5) At 25°C, B = 30 mT. Including hysteresis error, caused by revolution direction change. Relative error after zero angle definition. Not subject to production test - verified by design/characterization. 0 h. If autocalibration (see Chapter 4.3.5) is enabled and the temperature changes by more than 5 Kelvin during 1.5 revolutions an additional error has to be added to the specified angle error in Table 11. This error depends on the temperature change (Delta Temperature) as well as from the initial temperature (Tstart) as shown in Figure 16. Once the temperature stabilizes and the application completes 1.5 revolutions, then the angle error is as specified in Table 11. For negative Delta Temperature changes (from higher to lower temperatures) the additional angle error will be smaller than the corresponding positive Delta Temperature changes (from lower to higher temperatures) shown in Figure 16. The Figure 16 applies to the worst case. Data Sheet 21 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Specification Additional angle error (°) 3.5 3 2.5 2 Tstart Tstart Tstart Tstart Tstart Tstart Tstart 1.5 1 0.5 0 -40°C 25°C 85°C 105°C 125°C 135°C >135°C 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 Delta Temperature (Kelvin) within 1.5 revolutions Figure 16 Additional angle error for temperature changes above 5 Kelvin within 1.5 revolutions 4.3.5 Autocalibration The autocalibration enables online parameter calculation and therefore reduces the angle error due to temperature and lifetime drifts. The TLE5012B is a pre-calibrated sensor, so autocalibration is only enabled in some devices by default. The update mode can be chosen with the AUTOCAL setting in the MOD_2 register. The TLE5012B needs 1.5 revolutions to generate new autocalibration parameters. These parameters are continuously updated. The parameters are updated in a smooth way (one Least-Significant Bit within the chosen range or time) to avoid an angle jump on the output. AUTOCAL Modes: • 00: No autocalibration. • 01: Autocalibration Mode 1. One LSB to final values within the update time tupd (depending on FIR_MD setting). • 10: Autocalibration Mode 2. Only one LSB update over one full parameter generation (1.5 revolutions). After update of one LSB, the autocalibration will calculate the parameters again. • 11: Autocalibration Mode 3. One LSB to final values within an angle range of 11.25°. Data Sheet 22 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Specification 4.3.6 Signal processing TLE5012B X GMR SDADC Filter Angle Calculation Y GMR SDADC Microcontroller IF Filter t delIF t adelSSC t adelIIF Figure 17 Signal path The signal path of the TLE5012B is depicted in Figure 17. It consists of the GMR-bridge, ADC, filter and angle calculation. The delay time between a physical change in the GMR elements and a signal on the output depends on the filter and interface configurations. In fast turning applications, this delay causes an additional rotation speed dependent angle error. The TLE5012B has an optional prediction feature, which serves to reduce the speed dependent angle error in applications where the rotation speed does not change abruptly. Prediction uses the difference between current and last two angle values to approximate the angle value which will be present after the delay time (see Figure 18). The output value is calculated by adding this difference to the measured value, according to Equation (4.1). (4.1) α (t + 1) = α (t ) + α (t − 1) − α (t − 2) Sensor output Angle Magnetic field direction tadel Figure 18 Data Sheet t upd With Prediction Without Prediction time Delay of sensor output 23 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Specification Table 12 Signal processing Parameter Symbol Values Min. Filter update period Angle delay time without prediction2) tupd tadelSSC tadelIIF Angle delay time with prediction2) tadelSSC tadelIIF Angle noise (RMS) NAngle Unit Note or Test Condition 42.7 µs FIR_MD = 11) 85.3 µs FIR_MD = 21) 170.6 µs FIR_MD = 31) Typ. Max. 85 95 µs FIR_MD = 11) 150 165 µs FIR_MD = 21) 275 300 µs FIR_MD = 31) 120 135 µs FIR_MD = 11) 180 200 µs FIR_MD = 21) 305 330 µs FIR_MD = 31) 45 50 µs FIR_MD = 1; PREDICT = 11) 65 70 µs FIR_MD = 2; PREDICT = 11) 105 115 µs FIR_MD = 3; PREDICT = 1 1) 75 90 µs FIR_MD = 1; PREDICT = 11) 95 110 µs FIR_MD = 2; PREDICT = 11) 135 150 µs FIR_MD = 3; PREDICT = 1 1) 0.08 ° FIR_MD = 11) 0.05 ° FIR_MD = 21)(default) 0.04 ° FIR_MD = 31) 1) Not subject to production test - verified by design/characterization. 2) Valid at constant rotation speed. All delay times specified in Table 12 are valid for an ideal internal oscillator frequency of 24 MHz. For the exact timing, the variation of the internal oscillator frequency has to be taken into account (see Chapter 4.3.7). Data Sheet 24 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Specification 4.3.7 Clock supply (CLK timing definition) The internal clock supply of the TLE5012B is subject to production-specific variations, which have to be considered for all timing specifications. Table 13 Internal clock timing specification Parameter Symbol Values Min. Typ. Max. Unit Digital clock fDIG 22.8 24 25.8 MHz Internal oscillator frequency fCLK 3.8 4.0 4.3 MHz Note or Test Condition In order to fix the IC timing and synchronize the TLE5012B with other ICs in a system, it can be switched to operate with an external clock signal supplied to the IFC pin. The clock input signal must fulfill certain requirements: • The high or low pulse width must not exceed the specified values, because the PLL needs a minimum pulse width and must be spike-filtered. • The duty cycle factor should typically be 50%, but it can vary between 30% and 70%. • The PLL is triggered at the positive edge of the clock. If more than 2 edges are missing, a chip reset is generated automatically and the sensor restarts with the internal clock. This is indicated by the S_RST, and CLK_SEL bits, and additionally by the Safety Word (see Chapter 4.4.1.2). tCLK tCLKh tCLKl VH VL t Figure 19 External CLK timing definition Table 14 External clock specification Parameter Symbol Values Unit Note or Test Condition Min. Typ. Max. fCLK 3.8 4.0 4.3 MHz CLK duty cycle CLKDUTY 30 50 70 % CLK rise time tCLKr 30 ns From VL to VH CLK fall time tCLKf 30 ns From VH to VL Input frequency 1)2) 1) Minimum duty cycle factor: tCLKh(min) / tCLK with tCLK= 1 / fCLK 2) Maximum duty cycle factor: tCLKh(max) / tCLK with tCLK= 1 / fCLK Data Sheet 25 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Specification 4.4 Interfaces 4.4.1 Synchronous Serial Communication (SSC) The 3-pin SSC interface consists of a bi-directional push-pull (tri-state on receive) or open-drain data pin (configurable with SSC_OD bit) and the serial clock and chip-select input pins. The SSC Interface is designed to communicate with a microcontroller peer-to-peer for fast applications. 4.4.1.1 SSC timing definition tCSs tCSh tSCKp tCSoff CSQ tSCKh tSCKl SCK DATA tDATAs Figure 20 tDATAh SSC timing SSC inactive time (CSoff) The SSC inactive time defines the delay time after a transfer before the TLE5012B can be selected again. Table 15 SSC push-pull timing specification Parameter Symbol Values Min. Typ. Unit Note or Test Condition Mbit/s 1) Max. SSC baud rate fSSC CSQ setup time tCSs 105 ns 1) CSQ hold time tCSh 105 ns 1) CSQ off tCSoff 600 ns SSC inactive time1) SCK period tSCKp 120 ns 1) SCK high tSCKh 40 ns 1) SCK low tSCKl 30 ns 1) DATA setup time tDATAs 25 ns 1) DATA hold time tDATAh 40 ns 1) Write read delay twr_delay 130 ns 1) Update time tCSupdate 1 µs See Figure 241) SCK off tSCKoff 170 ns 1) 8.0 125 1) Not subject to production test - verified by design/characterization. Data Sheet 26 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Specification Table 16 SSC open-drain timing specification Parameter Symbol Values Min. Typ. Unit Note or Test Condition Max. 2.0 Mbit/s Pull-up Resistor = 1 kΩ1) SSC baud rate fSSC CSQ setup time tCSs 300 ns 1) CSQ hold time tCSh 400 ns 1) CSQ off tCSoff 600 ns SSC inactive time1) SCK period tSCKp 500 ns 1) SCK high tSCKh 190 ns 1) SCK low tSCKl 190 ns 1) DATA setup time tDATAs 25 ns 1) DATA hold time tDATAh 40 ns 1) Write read delay twr_delay 130 ns 1) Update time tCSupdate 1 µs See Figure 241) SCK off tSCKoff 170 ns 1) 1) Not subject to production test - verified by design/characterization. Data Sheet 27 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Specification 4.4.1.2 SSC data transfer The SSC data transfer is word-aligned. The following transfer words are possible: • Command Word (to access and change operating modes of the TLE5012B) • Data words (any data transferred in any direction) • Safety Word (confirms the data transfer and provides status information) twr_delay COMMAND READ Data 1 READ Data 2 SAFETY-WORD SSC-Master is driving DATA SSC-Slave is driving DAT A Figure 21 SSC data transfer (data-read example) twr_delay COMMAND WRITE Data 1 SAFETY-WORD SSC-Master is driving DATA SSC-Slave is driving DAT A Figure 22 SSC data transfer (data-write example) Command Word SSC Communication between the TLE5012B and a microcontroller is generally initiated by a command word. The structure of the command word is shown in Table 17. If an update is triggered by shortly pulling low CSQ without a clock on SCK a snapshot of all system values is stored in the update registers simultaneously. A read command with the UPD bit set then allows to readout this consistent set of values instead of the current values. Bits with an update buffer are marked by an “u” in the Type column in register descriptions. The initialization of such an update is described on page 30. Table 17 Structure of the Command Word Name Bits Description RW [15] Read - Write 0: Write 1: Read Lock [14..11] 4-bit Lock Value 0000B: Default operating access for addresses 0x00:0x04 1010B: Configuration access for addresses 0x05:0x11 Data Sheet 28 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Specification Table 17 Structure of the Command Word (cont’d) Name Bits Description UPD [10] Update-Register Access 0: Access to current values 1: Access to values in update buffer ADDR [9..4] 6-bit Address ND [3..0] 4-bit Number of Data Words Safety Word The safety word consists of the following bits: Table 18 Name 1) STAT Structure of the Safety Word Bits Description Chip and Interface Status [15] Indication of chip reset or watchdog overflow (resets after readout) via SSC 0: Reset occurred 1: No reset [14] System error (e.g. overvoltage; undervoltage; VDD-, GND- off; ROM;...) 0: Error occurred (S_VR; S_DSPU; S_OV; S_XYOL: S_MAGOL; S_FUSE; S_ROM; S_ADCT) 1: No error [13] Interface access error (access to wrong address; wrong lock) 0: Error occurred 1: No error [12] Valid angle value (NO_GMR_A = 0; NO_GMR_XY = 0) 0: Angle value invalid 1: Angle value valid RESP [11..8] Sensor number response indicator The sensor number bit is pulled low and the other bits are high CRC [7..0] Cyclic Redundancy Check (CRC) 1) When an error occurs, the corresponding status bit in the safety word remains “low” until the STAT register (address 00H) is read via SSC interface. Data Sheet 29 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Specification Bit Types The types of bits used in the registers are listed here: Table 19 Bit Types Abbreviation Function Description r Read Read-only registers w Write Read and write registers u Update Update buffer for this bit is present. If an update is issued and the UpdateRegister Access bit (UPD in Command Word) is set, the immediate values are stored in this update buffer simultaneously. This allows a snapshot of all necessary system parameters at the same time. Data communication via SSC SSC Transfer twr_delay Command Word Data Word (s) SCK DATA MSB 14 13 12 11 10 9 8 7 6 5 4 3 2 1 LSB MSB 1 LSB CSQ RW LOCK UPD ADDR LENGTH SSC -Master is driving DAT A SSC -Slave is driving DAT A Figure 23 SSC bit ordering (read example) Update -Signal SCK Command Word Data Word (s) Update -Event MSB DATA LSB LSB CSQ tCSupdate SSC -Master is driving DAT A SSC -Slave is driving DAT A Figure 24 Update of update registers The data communication via SSC interface has the following characteristics: • The data transmission order is Most-Significant Bit (MSB) first, Last-Significant Bit (LSB) last. • Data is put on the data line with the rising edge on SCK and read with the falling edge on SCK. • The SSC Interface is word-aligned. All functions are activated after each transmitted word. • After every data transfer with ND ≥ 1, the 16-bit Safety Word is appended by the TLE5012B. • A “high” condition on the Chip Select pin (CSQ) of the selected TLE5012B interrupts the transfer immediately. The CRC calculator is automatically reset. • After changing the data direction, a delay twr_delay (see Table 16) has to be implemented before continuing the data transfer. This is necessary for internal register access. Data Sheet 30 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Specification • If in the Command Word the number of data is greater than 1 (ND > 1), then a corresponding number of consecutive registers is read, starting at the address given by ADDR. • In case an overflow occurs at address 3FH, the transfer continues at address 00H. • If in the Command Word the number of data is zero (ND = 0), the register at the address given by ADDR is read, but no Safety Word is sent by the TLE5012B. This allows a fast readout of one register. • At a rising edge of CSQ without a preceding data transfer (no SCK pulse, see Figure 24), the content of all registers which have an update buffer is saved into the buffer. This procedure serves to take a snapshot of all relevant sensor parameters at a given time. The content of the update buffer can then be read by sending a read command for the desired register and setting the UPD bit of the Command Word to “1”. • After sending the Safety Word, the transfer ends. To start another data transfer, the CSQ has to be deselected once for at least tCSoff. • By default, the SSC interface is set to push-pull. The push-pull driver is active only if the TLE5012B has to send data, otherwise the DATA pin is set to high-impedance. Cyclic Redundancy Check (CRC) • This CRC is according to the J1850 Bus Specification. • Every new transfer restarts the CRC generation. • Every Byte of a transfer will be taken into account to generate the CRC (also the sent command(s)). • Generator polynomial: X8+X4+X3+X2+1, but for the CRC generation the fast-CRC generation circuit is used (see Figure 25). • The seed value of the fast CRC circuit is ‘11111111B’. • The remainder is inverted before transmission. Serial CRC output X7 1 X6 1 X5 1 X4 1 xor X3 X2 1 xor 1 X1 xor 1 X0 1 & xor Input TX_CRC parallel Remainder Figure 25 Data Sheet Fast CRC polynomial division circuit 31 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Specification 4.4.2 Pulse Width Modulation (PWM) interface The Pulse Width Modulation (PWM) interface can be selected via SSC (IF_MD = ‘01’). The PWM update rate can be programmed within the register 0EH (IFAB_RES) in the following steps: • ~0.25 kHz with 12-bit resolution • ~0.5 kHz with 12-bit resolution • ~1.0 kHz with 12-bit resolution • ~2.0 kHz with 12-bit resolution PWM uses a square wave with constant frequency whose duty cycle is modulated according to the last measured angle value (AVAL register). Figure 26 shows the principal behavior of a PWM with various duty cycles and the definition of timing values. The duty cycle of a PWM is defined by the following general formulas: Duty Cycle = ton t PWM t PWM = t on + toff f PWM = 1 t PWM (4.2) The duty cycle range between 0 - 6.25% and 93.75 - 100% is used only for diagnostic purposes. In case the sensor detects an error, the corresponding error bit in the Status register is set and the PWM duty cycle goes to the lower (0 - 6.25%) or upper (93.75 - 100%) diagnostic range, depending on the kind of error (see “Output duty cycle range” in Table 20). Except for an S_ADCT error, an error is only indicated by the corresponding diagnostic duty-cycle as long as it persists, but at least once. However the value in the status register will remain until a read-out via the SSC interface or a chip reset is performed. An S_ADCT error on the other side will be transmitted until the next chip reset. This fail-safe diagnostic function can be disabled via the MOD_4 register. Sensors with preset PWM are available as TLE5012B E50x0. UIFA Vdd ON = High level OFF = Low level tON tPWM Duty cycle = 6.25% tOFF ‚0' UIFA Vdd UIFA ‚0' Vdd ‚0' Figure 26 Data Sheet Duty cycle = 50% t Duty cycle = 93.75% t t Typical example of a PWM signal 32 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Specification Table 20 PWM interface Parameter Symbol PWM output frequencies (Selectable by IFAB_RES) Output duty cycle range Values Unit Note or Test Condition Min. Typ. Max. fPWM1 232 244 262 Hz 1) fPWM2 464 488 525 Hz 1) fPWM3 929 977 1050 Hz 1) fPWM4 1855 1953 2099 Hz 1) DYPWM 6.25 93.75 % Absolute angle1) 2 % Electrical Error (S_RST; S_VR)1) 98 % System error (S_FUSE; S_OV; S_XYOL; S_MAGOL; S_ADCT)1) 0 1 % Short to GND1) 99 100 % Short to VDD, power loss1) 1) Not subject to production test - verified by design/characterization. The PWM frequency is derived from the digital clock via: f PWM = (4.3) f DIG * 2 IFAB_RES 24 * 4096 The min/max values given in Table 20 take into account the internal digital clock variation specified in Chapter 4.3.7. If external clock is used, the variation of the PWM frequency can be derived from the variation of the external clock using Equation (4.3). Data Sheet 33 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Specification 4.4.3 Short PWM Code (SPC) The Short PWM Code (SPC) is a synchronized data transmission based on the SENT protocol (Single Edge Nibble Transmission) defined by SAE J2716. As opposed to SENT, which implies a continuous transmission of data, the SPC protocol transmits data only after receiving a specific trigger pulse from the microcontroller. The required length of the trigger pulse depends on the sensor number, which is configurable. Thereby, SPC allows the operation of up to four sensors on one bus line. SPC enables the use of enhanced protocol functionality due to the ability to select between various sensor slaves (ID selection). The slave number (S_NR) can be given by the external circuit of SCK and IFC pin. In case of VDD on SCK, the S_NR[0] can be set to 1 and in the case of GND on SCK the S_NR[0] is equal to 0. S_NR[1] can be adjusted in the same way by the IFC pin. As in SENT, the time between two consecutive falling edges defines the value of a 4-bit nibble, thus representing numbers between 0 and 15. The transmission time therefore depends on the transmitted data values. The single edge is defined by a 3 Unit Time (UT, see Chapter 4.4.3.1) low pulse on the output, followed by the high time defined in the protocol (nominal values, may vary depending on the tolerance of the internal oscillator and the influence of external circuitry). All values are multiples of a unit time frame concept. A transfer consists of the following parts (Figure 27): • A trigger pulse by the master, which initiates the data transmission • A synchronization period of 56 UT (in parallel, a new sample is calculated) • A status nibble of 12-27 UT • Between 3 and 6 data nibbles of 12-27 UT • A CRC nibble of 12-27 UT • An end pulse to terminate the SPC transmission Trigger Nibble Synchronisation Frame Status -Nibble Data-Nibble 1 Bit 11-8 Data-Nibble 2 Bit 7-4 Data-Nibble 3 Bit 3-0 56 tck 12..27 tck 12..27 tck 12..27 tck 12..27 tck 24,34,51,78 tck µC Activity Sensor Activity Figure 27 CRC End -Pulse 12..27 tck 12 tck Time-Base: 1 tck (3µs+/-dtck ) Nibble-Encoding : ( 12+x)*tck SPC frame example The CRC checksum includes the status nibble and the data nibbles, and can be used to check the validity of the decoded data. The sensor is available for the next trigger pulse 90 µs after the falling edge of the end pulse (see Figure 28). Trigger Nibble Synchronisation Frame End-Pulse Trigger Nibble ... µC Activity Sensor Activity Figure 28 Data Sheet Synchronisation Frame End-Pulse ... > 90 µs SPC pause timing diagram 34 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Specification In SPC mode, the sensor does not continuously calculate an angle from the raw data. Instead, the angle calculation is started by the trigger nibble from the master. In this mode, the AVAL register, which stores the angle value and can be read via SSC, contains the angle which was calculated after the last SPC trigger nibble. In parallel to SPC, the SSC interface can be used for individual configuration. The number of transmitted SPC nibbles can be changed to customize the amount of information sent by the sensor. The frame contains a 16bit angle value and an 8-bit temperature value in the full configuration (Table 21). Sensors with preset SPC are available as TLE5012B E9000. Table 21 Frame configuration Frame type IFAB_RES Data nibbles 12-bit angle 00 3 nibbles 16-bit angle 01 4 nibbles 12-bit angle, 8-bit temperature 10 5 nibbles 16-bit angle, 8-bit temperature 11 6 nibbles The status nibble, which is sent with each SPC data frame, provides an error indication similar to the Safety Word of the SSC protocol. In case the sensor detects an error, the corresponding error bit in the Status register is set and either the bit SYS_ERR or the bit ELEC_ERR of the status nibble will be “high”, depending on the kind of error (see Table 22). Except for an S_ADCT error, an error is only indicated by the corresponding error bit in the status nibble as long as it persists, but at least once. However the value in the status register will remain until a read-out via the SSC interface or a chip reset is performed. An S_ADCT error on the other side will be transmitted until the next chip reset. The fail-safe diagnostic function can be disabled via the MOD_4 register. Table 22 Structure of status nibble Name Bits Description SYS_ERR [3] Indication of system error (S_FUSE, S_OV, S_XYOL, S_MAGOL, S_ADCT) 0: No system error 1: System error occurred ELEC_ERR [2] Indication of electrical error (S_RST, S_VR) 0: No electrical error 1: Electrical error occurred S_NR [1] Slave number bit 1 (level on IFC) [0] Slave number bit 0 (level on SCK) Data Sheet 35 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Specification 4.4.3.1 Unit time setup The basic SPC protocol unit time granularity is defined as 3 µs. Every timing is a multiple of this basic time unit.To achieve more flexibility, trimming of the unit time can be done within IFAB_HYST. This enables a setup of different unit times. Table 23 Parameter Predivider setting Symbol Values Min. Unit time tUnit Typ. Unit Note or Test Condition µs IFAB_HYST = 001) Max. 3.0 2.5 IFAB_HYST = 011) 2.0 IFAB_HYST = 101) 1.5 IFAB_HYST = 111) 1) Not subject to production test - verified by design/characterization. Data Sheet 36 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Specification 4.4.3.2 Master trigger pulse requirements An SPC transmission is initiated by a master trigger pulse on the IFA pin. To detect a low-level on the IFA pin, the voltage must be below a threshold Vth. The sensor detects that the IFA line has been released as soon as Vth is crossed. Figure 29 shows the timing definitions for the master pulse. The master low time tmlow as well as the total trigger time tmtr are given in Table 24. If the master low time exceeds the maximum low time, the sensor does not respond and is available for a next triggering 30 µs after the master pulse crosses Vthr. tmd,tot is the delay between internal triggering of the falling edge in the sensor and the triggering of the ECU. tmtr SPC ECU trigger level Vth t md,tot tmlow Figure 29 SPC master pulse timing Table 24 Master pulse parameters Parameter Symbol Values Min. Typ. Unit Note or Test Condition Max. Threshold Vth 50 % of VDD 1) Threshold hysteresis Vthhyst 8 % of VDD = 5 V1) 3 VDD VDD = 3 V1) 90 UT SPC_Trigger = 0;1)2) tmlow +12 UT SP_Trigger = 11) UT S_NR =001) Total trigger time Master low time Master delay time tmtr tmlow tmd,tot 8 12 14 16 22 27 S_NR =011) 29 39 48 S_NR =101) 50 66 81 S_NR =111) 5.8 µs 1) 1) Not subject to production test - verified by design/characterization. 2) Trigger time in the sensor is fixed to the number of units specified in the “Typ.” column, but the effective trigger time varies due to the sensor’s clock variation. 4.4.3.3 Checksum nibble details The checksum nibble is a 4-bit CRC of the data nibbles including the status nibble. The CRC is calculated using a polynomial x4+x3+x2+1 with a seed value of 0101B. The remainder after the last data nibble is transmitted as CRC. Data Sheet 37 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Specification 4.4.4 Hall Switch Mode (HSM) The Hall Switch Mode (HSM) within the TLE5012B makes it possible to emulate the output of 3 Hall switches. Hall switches are often used in electrical commutated motors to determine the rotor position. With these 3 output signals, the motor will be commutated in the right way. Depending on which pole pairs of the rotor are used, various electrical periods have to be controlled. This is selectable within 0EH (HSM_PLP). Figure 30 depicts the three output signals with the relationship between electrical angle and mechanical angle. The mechanical 0° point is always used as reference. The HSM is generally used with push-pull output, but it can be changed to open-drain within the register IFAB_OD. Sensors with preset HSM are available as TLE5012B E3005. Hall-Switch-Mode: 3phase Generation Electrical Angle 0° 60° 120° 180° 240° 300° 360° HS1 HS2 HS3 Angle Mech. Angle with 5 Pole Pairs 0° 12° 24° 36° 48° 60° 72° Mech. Angle with 3 Pole Pairs 0° 20° 40° 60° 80° 100° 120° Figure 30 Hall Switch Mode The HSM Interface can be selected via SSC (IF_MD = 010). Data Sheet 38 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Specification Table 25 Hall Switch Mode Parameter Symbol Values Min. Rotation speed n Electrical angle accuracy αelect Mechanical angle switching hysteresis αHShystm Electrical angle switching hysteresis5) αHShystel Data Sheet Unit Note or Test Condition 10000 rpm Mechanical2) 0.6 1 ° 1 pole pair with autocalibration1)2) 1.2 2 ° 2 pole pairs with autocal.1)2) 1.8 3 ° 3 pole pairs with autocal.1)2) 2.4 4 ° 4 pole pairs with autocal.1)2) 3.0 5 ° 5 pole pairs with autocal.1)2) 3.6 6 ° 6 pole pairs with autocal.1)2) 4.2 7 ° 7 pole pairs with autocal.1)2) 4.8 8 ° 8 pole pairs with autocal.1)2) 5.4 9 ° 9 pole pairs with autocal.1)2) 6.0 10 ° 10 pole pairs with autocal.1)2) 6.6 11 ° 11 pole pairs with autocal.1)2) 7.2 12 ° 12 pole pairs with autocal.1)2) 7.8 13 ° 13 pole pairs with autocal.1)2) 8.4 14 ° 14 pole pairs with autocal.1)2) 9.0 15 ° 15 pole pairs with autocal.1)2) 9.6 16 ° 16 pole pairs with autocal.1)2) 0.703 ° Selectable by IFAB_HYST2)3)4) 0.70 ° 1 pole pair; IFAB_HYST=111)2) 1.41 ° 2 pole pairs; IFAB_HYST=111)2) 2.11 ° 3 pole pairs; IFAB_HYST=111)2) 2.81 ° 4 pole pairs; IFAB_HYST=111)2) 3.52 ° 5 pole pairs; IFAB_HYST=111)2) 4.22 ° 6 pole pairs; IFAB_HYST=111)2) 4.92 ° 7 pole pairs; IFAB_HYST=111)2) 5.62 ° 8 pole pairs; IFAB_HYST=111)2) 6.33 ° 9 pole pairs; IFAB_HYST=111)2) 7.03 ° 10 pole pairs; IFAB_HYST=111)2) 7.73 ° 11 pole pairs; IFAB_HYST=111)2) 8.44 ° 12 pole pairs; IFAB_HYST=111)2) 9.14 ° 13 pole pairs; IFAB_HYST=111)2) 9.84 ° 14 pole pairs; IFAB_HYST=111)2) 10.55 ° 15 pole pairs; IFAB_HYST=111)2) 11.25 ° 16 pole pairs; IFAB_HYST=111)2) Typ. 0 39 Max. Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Specification Table 25 Hall Switch Mode (cont’d) Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Fall time tHSfall 0.02 1 µs RL = 2.2 kΩ; CL < 50 pF2) Rise time tHSrise 0.4 1 µs RL = 2.2 kΩ; CL < 50 pF2) 1) 2) 3) 4) 5) Depends on internal oscillator frequency variation (Section 4.3.7). Not subject to production test - verified by design/characterization. GMR hysteresis not considered. Minimum hysteresis without switching. The hysteresis has to be considered only at change of rotation direction. To avoid switching due to mechanical vibrations of the rotor, an artificial hysteresis is recommended (Figure 31). Ideal Switching Point α HShystel αHShystel αelect Figure 31 HS hysteresis 4.4.5 Incremental Interface (IIF) 0° αelect The Incremental Interface (IIF) emulates the operation of an optical quadrature encoder with a 50% duty cycle. It transmits a square pulse per angle step, where the width of the steps can be configured from 9 bit (512 steps per full rotation) to 12 bit (4096 steps per full rotation) within the register MOD_4 (IFAB_RES)1). The rotation direction is given either by the phase shift between the two channels IFA and IFB (A/B mode) or by the level of the IFB channel (Step/Direction mode), as shown in Figure 32 and Figure 33. The incremental interface can be configured for A/B mode or Step/Direction mode in register MOD_1 (IIF_MOD). Using the Incremental Interface requires an up/down counter on the microcontroller, which counts the pulses and thus keeps track of the absolute position. The counter can be synchronized periodically by using the SSC interface in parallel. The angle value (AVAL register) read out by the SSC interface can be compared to the stored counter value. In case of a non-synchronization, the microcontroller adds the difference to the actual counter value to synchronize the TLE5012B with the microcontroller. After startup, the IIF transmits a number of pulses which correspond to the actual absolute angle value. Thus, the microcontroller gets the information about the absolute position. The Index Signal that indicates the zero crossing is available on the IFC pin. Sensors with preset IIF are available as TLE5012B E1000. 1) Decreasing the number of bits does not increase the maximum rotation speed. Data Sheet 40 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Specification A/B Mode The phase shift between phases A and B indicates either a clockwise (A follows B) or a counterclockwise (B follows A) rotation of the magnet. Incremental Interface (A/B Mode) 90° el . Phase shift Phase A Phase B VH VL VH VL Counter Figure 32 0 1 2 3 4 5 6 7 6 5 4 3 2 1 6 5 4 3 2 1 Incremental interface with A/B mode Step/Direction Mode Phase A pulses out the increments and phase B indicates the direction. Incremental Interface (Step /Direction Mode) Step VH VL Direction VH VL Counter 0 1 2 3 4 5 6 7 Figure 33 Incremental interface with Step/Direction mode Table 26 Incremental interface Parameter Symbol Values Min. Incremental output frequency fInc Index pulse width t0° Typ. Unit Note or Test Condition MHz Frequency of phase A and phase B1) µs 0°1) Max. 1.0 5 1) Not subject to production test - verified by design/characterization. Data Sheet 41 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Specification 4.5 Test mechanisms 4.5.1 ADC test vectors In order to test the correct functionality of the ADCs, the ADC inputs can be switched from the GMR bridge outputs to a chain of fixed resistors which act as a voltage divider. The ADCs are then fed with test vectors of fixed voltages to simulate a set of magnet positions. The functionality of the ADCs is verified by checking the angle value (AVAL register) for each test vector. This test is activated via SSC command within the SIL register (ADCTV_EN). Registers ADCTV_Y and ADCTV_X are used to select the test vector, as shown in Figure 34. The following X/Y ADC values can be programmed: • 4 points, circle amplitude = 70% (0°,90°, 180°, 270°) • 8 points, circle amplitude = 100% (0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°) • 8 points, circle amplitude = 122.1% (35.3°, 54.7°, 125.3°, 144.7°, 215.3°, 234.7°, 305.3°, 324.7°) • 4 points, circle amplitude = 141.4% (45°, 135°, 225°, 315°) Note: The 100% values typically correspond to 21700 digits and the 70% values to 15500 digits. Table 27 ADC test vectors Register bits X/Y values (decimal) Min. Typ. 000 0 001 15500 010 21700 011 100 Max. 32767 1) 0 101 -15500 110 -21700 111 -32768 1) Not allowed to use. Data Sheet 42 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Specification ADCTV_Y 122.1% 141.4% 100 .0% 0% 70% Figure 34 ADC test vectors 4.6 Supply monitoring ADCTV_X The internal voltage nodes of the TLE5012B are monitored by a set of comparators in order to ensure errorfree operation. An over- or undervoltage condition must be active at least 256 periods of the digital clock to set the corresponding error bits in the Status register. This works as digital spike suppression. Over- or undervoltage errors trigger the S_VR bit of Status register. This error condition is signaled via the in the Safety Word of the SSC protocol, the status nibble of the SPC interface or the lower diagnostic range of the PWM interface. Table 28 Test comparator threshold voltages Parameter Symbol Values Min. Typ. Unit Note or Test Condition Max. VOVG 2.80 V 1) VOVA 2.80 V 1) VOVD 2.80 V 1) VDD overvoltage VDDOV 6.05 V 1) VDD undervoltage VDDUV 2.70 V 1) GND - off voltage VGNDoff -0.55 V 1) VDD - off voltage VVDDoff 0.55 V 1) Spike filter delay tDEL 10 µs 1) Overvoltage detection 1) Not subject to production test - verified by design/characterization 4.6.1 Internal supply voltage comparators Every voltage regulator has an overvoltage (OV) comparator to detect malfunctions. If the nominal output voltage of 2.5 V is larger than VOVG, VOVA and VOVD, then this overvoltage comparator is activated. Data Sheet 43 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Specification 4.6.2 VDD overvoltage detection The overvoltage detection comparator monitors the external supply voltage at the VDD pin. VDDA - REF VDD VRG VRA VRD 10µs Spike Filter + GND Figure 35 Overvoltage comparator 4.6.3 GND - Off comparator xxx_OV GND The GND - Off comparator is used to detect a voltage difference between the GND pin and SCK. This circuit can detect a disconnection of the supply GND pin. VDD VDDA Diodereference SCK +dV - 1µs Mono Flop + GND 10µs Spike Filter GND_OFF GND Figure 36 GND - Off comparator 4.6.4 VDD - Off comparator The VDD - Off comparator detects a disconnection of the VDD pin supply voltage. In this case, the TLE5012B is supplied by the SCK and CSQ input pins via the ESD structures. VDDA - VDD 1µs Mono Flop VVDDoff CSQ SCK -dV GND Figure 37 Data Sheet + 10µs Spike Filter VDD _OFF GND VDD - Off comparator 44 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Pre-configured derivates 5 Pre-configured derivates Derivates of the TLE5012B are available with different pre-configured register settings for specific applications. The configuration of all derivates can be changed via SSC interface. 5.1 IIF-type: E1000 The TLE5012B-E1000 is preconfigured for Incremental Interface and fast angle update period (42.7 µs). It is most suitable for BLDC motor commutation. • Autocalibration mode 1 enabled. • Prediction enabled. • Hysteresis is set to 0.703°. • 12bit mode, one count per 0.088° angle step. • Incremental Interface A/B mode. 5.2 HSM-type: E3005 The TLE5012B-E3005 is preconfigured for Hall-Switch-Mode and fast angle update period (42.7 µs). It is most suitable as a replacement for three Hall switches for BLDC motor commutation. • Number of pole pairs is set to 5. • Autocalibration mode 1 enabled. • Prediction enabled. • Hysteresis is set to 0.703°. 5.3 PWM-type: E5000 The TLE5012B-E5000 is preconfigured for Pulse-Width-Modulation interface. It is most suitable for steering angle and actuator position sensing. • Filter update period is 85.4 µs. • PWM frequency is 244 Hz. • Autocalibration, Prediction, and Hysteresis are disabled. 5.4 PWM-type: E5020 The TLE5012B-E5020 is preconfigured for Pulse-Width-Modulation interface with high frequency. It is most suitable for steering angle and actuator position sensing. • Filter update period is 42.7 µs. • PWM frequency is 1953 Hz. • Autocalibration mode 2 enabled. • Prediction and Hysteresis are disabled. • PWM interface is set to open-drain output. Data Sheet 45 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Pre-configured derivates 5.5 SPC-type: E9000 The TLE5012B-E9000 is preconfigured for Short-PWM-Code interface. It is most suitable for steering angle and actuator position sensing. • Filter update period is 85.4 µs. • Autocalibration, Prediction, and Hysteresis are disabled. • SPC unit time is 3 µs. • SPC interface is set to open-drain output. Data Sheet 46 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Package information 6 Package information 6.1 Package parameters Table 29 Package parameters Parameter Symbol Values Min. Thermal resistance Unit Note or Test Condition Typ. Max. 150 200 K/W Junction to air1) RthJC 75 K/W Junction to case RthJL 85 K/W Junction to lead RthJA Soldering moisture level Lead Frame MSL 3 260°C Cu Plating Sn 100% > 7 µm 1) according to Jedec JESD51-7 6.2 Package outline Figure 38 PG-DSO-8 package dimension Data Sheet 47 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Package information Figure 39 Position of sensing element Table 30 Sensor IC placement tolerances in package Parameter Symbol Values Min. Typ. Unit Note or Test Condition Max. Position eccentricity -200 200 µm In X- and Y-direction Rotation -3 3 ° Affects zero position offset of sensor Tilt -3 3 ° Footprint 1.31 6.3 5.69 0.65 1.27 Figure 40 Data Sheet Footprint of PG-DSO-8 48 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Package information 6.4 Packing 0.3 5.2 12 ±0.3 8 1.75 6.4 2.1 Figure 41 Tape and Reel 6.5 Marking Position Marking Description 1st Line 012Bxxxx See Table 1 “Derivate ordering codes” on Page 2 2nd Line xxx Lot code 3rd Line Gxxxx G..green, 4-digit..date code Processing Note: Data Sheet For processing recommendations, please refer to Infineon’s Notes on processing 49 Rev. 2.1 2018-06-20 TLE5012B GMR-Based Angle Sensor Revision history 7 Revision history Revision Date Changes Rev. 2.1 2018-06-20 New Template/New Logo Chapter 4.4.5: Add footnote regarding maximum rotation speed Chapter 3: Update Chapter 3 Data Sheet 50 Rev. 2.1 2018-06-20 Trademarks All referenced product or service names and trademarks are the property of their respective owners. Edition 2018-06-20 Published by Infineon Technologies AG 81726 Munich, Germany © 2018 Infineon Technologies AG. All Rights Reserved. Do you have a question about any aspect of this document? Email: erratum@infineon.com Document reference Doc_Number IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.
TLE5012B E9000 价格&库存

很抱歉,暂时无法提供与“TLE5012B E9000”相匹配的价格&库存,您可以联系我们找货

免费人工找货